Metabolism of glyphosate in Pseudomonas sp. strain LBr
نویسندگان
چکیده
منابع مشابه
Metabolism of glyphosate in Pseudomonas sp. strain LBr.
Metabolism of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. strain LBr, a bacterium isolated from a glyphosate process waste stream, was examined by a combination of solid-state 13C nuclear magnetic resonance experiments and analysis of the phosphonate composition of the growth medium. Pseudomonas sp. strain LBr was capable of eliminating 20 mM glyphosate from the growth medium, an a...
متن کاملGlyphosate catabolism by Pseudomonas sp. strain PG2982.
The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined by using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3-14C]glyphosate revealed that approximately 50 to 59% of the C-3 carbon was oxidized to CO2. Fractionation of stationary-phase cells labeled with [3-14C]glyphosate revealed that from 45 to 4...
متن کاملSolid-state NMR determination of glyphosate metabolism in a Pseudomonas sp.
The metabolism of the broad-spectrum herbicide, glyphosate (N-phosphonomethylglycine) in a soil Pseudomonas sp. PG2982 has been determined by cross-polarization magic-angle spinning 15N and 13C NMR of intact lyophilized cells. Using samples grown on 13C- and 15N-labeled glyphosate, we find that PG2982 does not metabolize glyphosate to aminomethylphosphonate as has been reported for mixed cultur...
متن کاملPhosphate starvation induces uptake of glyphosate by Pseudomonas sp. strain PG2982.
Pseudomonas sp. strain PG2982 has the ability to use the phosphonate herbicide, glyphosate, as a sole phosphorus source (J. K. Moore, H. D. Braymer, and A. D. Larson, Appl. Environ. Microbiol. 46:316-320, 1983). Glyphosate uptake is maximal in the late log phase of growth and is induced by phosphate starvation. Uptake is inhibited by phosphate and arsenate, but not by the amino acids glycine an...
متن کاملBiodegradation of Methyl tert-Butyl Ether by Co-Metabolism with a Pseudomonas sp. Strain
Co-metabolic bioremediation is supposed to be an impressive and promising approach in the elimination technology of methyl tert-butyl ether (MTBE), which was found to be a common pollutant worldwide in the ground or underground water in recent years. In this paper, bacterial strain DZ13 (which can co-metabolically degrade MTBE) was isolated and named as Pseudomonas sp. DZ13 based on the result ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Environmental Microbiology
سال: 1988
ISSN: 0099-2240,1098-5336
DOI: 10.1128/aem.54.12.2953-2958.1988